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Decision-making, Behavioural modeling, Automated vehicles. 

This work presents a consideration of the applicability of risky decision-making theory models as a tool to understand 

drivers’ take-over behaviour from vehicle automation, while also incorporating the “Out of the Loop” concept and the 

process of Situation Awareness Recovery. A methodological discussion is provided, and implications for the processes 

involved in system design developments are presented. Finally, the paper concludes that the process of evidence 

accumulation in risky decision-making theory models has strong parallels with the process of Situation Awareness 

recovery. We argue that evidence accumulation models can be used as a tool to understand what information is used by 

drivers for achieving safe transitions of control from automation so that this knowledge can be used for a better, and 

more human-centred design of future in-vehicle interfaces. In the end, this paper presents one theoretical model as a 

practical implementation of the theory discussed in experimental datasets. 
 

Tomada de decisão, Modelagem comportamental, Automação veicular. 
Este trabalho apresenta uma apreciação teórica da aplicabilidade de modelos de tomada de decisão de risco como uma 

ferramenta para entender o comportamento de motoristas durante retomadas de controle de um veículo automatizado. O 

artigo se foca na relação entre o conceito de “Out of the Loop” e consciência da situação. Uma discussão metodológica 

é feita, e suas implicaçóes para o design de produtos é apresentada. Ao fim da discussão, este artigo conclui que o 

processo de acumulação de evidência em modelos de tomada de decisão possui paralelos fortes com o conceito de 

retomada de consciência da situação. Dito isto, modelos de acumulação de evidência podem ser tuilizados como 

ferramentas para entender como motoristas usam a informação para tomar decisões seguras, e esta informação pode ser 

reforçada no design de interfaces embarcadas. Ao fim do artigo, um modelo conceitual é apresentado como sugestão 

para aplicação prática da teoria proposta em dados experimentais. 

 

 

1. Introduction 
 

Among the human factors-related challenges of 

implementing vehicle automation, is ensuring safe 

responses from users during transitions of control. 

Recent research into this issue forms part of a larger 

body of research regarding the better design of 

human-machine interfaces, spanning multiple 

domains and decades. These challenges highlight an 

old irony of automation, where the more reliable the 

automation, the less prepared the human is to react 

in a time of need (Bainbridge, 1985). This is 
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especially true for higher levels of vehicle 

automation, which do not require continuous 

monitoring of the driving task, but still rely on users 

to resume control, for example, when a system 

limitation is reached (Level 3. See SAE, 2018 for a 

complete description of the levels of vehicular 

automation). 

 

Many recent driving simulator studies, for example, 

those described by Louw & Merat (2017), have 

identified that drivers in higher levels of vehicle 

automation (SAE L2+) are removed from the 

decision-making and control loops of the driving 

task, placing them “out of the loop” (see Merat et al. 

(2018) for a recent description of the term). This 

disengagement from the loops is thought to reduce 

drivers’ capacity to react in dangerous situations, 

increasing the likelihood of collisions.  

 

Many researchers have tried to understand what 

constitutes a safe transition of control from 

automation, investigating what factors influence the 

success of a transition. For example, Gold et al. 

(2013) demonstrated that drivers’ response to an 

impending collision, following a request for a 

transition of control, is dependent on the amount of 

time given to drivers for this response. These 

authors report that when drivers were given less 

time to react, they reacted faster, but more 

erratically, as shown by the vehicle’s lateral and 

longitudinal accelerations. In contrast, when given 

more time to respond to an impending collision, 

drivers reacted more slowly but had a more stable 

response profile.  

 

Zeeb at al. (2015, 2016) have shown that drivers’ 

take-over time and the quality of this take over 

(measured as vehicle lateral deviation), is linked to 

their attention to the road environment during 

automated driving, with higher levels of distraction 

to other, non-driving-related tasks, leading to a 

deterioration of take-over quality. However, Louw 

et al. (2018) suggest that take-over time and vehicle 

controllability alone are not good predictors of a 

safe transition of control, but rather the early 

mitigation of a threat, with earlier transitions of 

control leading to fewer collisions. 

 

A common limitation of studies attempting to 

correlate drivers’ visual attention with their 

performance on non-driving-related tasks during 

automation, is that most investigate the location of 

drivers’ gaze, rather than attempting to understand 

how visual information, acquired from different 

sources during automation engagement, affects 

drivers’ resumption of control. While there have 

been efforts to model the factors that influence 

drivers’ capabilities to take-over control, and how 

they use the physical and mental resources they 

need to perform such an action, most have not 

managed to generate a predictive model, based on 

gaze patterns during take-overs (Happee et al., 

2018). For example, in Victor et al. (2018), while 

have reported that some drivers, even though 

looking to the road centre, still failed to avoid 

crashes during a transition of control (similar to 

results also reported by Louw et al., 2017).  

 

Studies in other domains have considered how 

visual information sampling affects decision making 

in humans (see Orquin & Loose, 2013 for a 

complete literature review of these studies). For 

instance, Fiedler & Glöckner (2012), identified that 

gamblers shift their gaze towards the gamble they 

are willing to make, before their decision, and used 

this information as a predictor of their choice 

selection.  

 

This paper proposes that the application of decision 

making theories, and related models, can be used to 

address some of the gaps in research on user 

resumption of control from vehicle automation, by 

providing a quantifiable method of linking the 

acquisition of specific information from the 

environment to the probability of a particular 

response (Orquin & Loose, 2013). Currently, there 

are only a few studies that highlight the possibility 

of such a link (c.f. Markkula et al., 2018). In this 

work, we consider how theoretical models for risky 

decision-making can be used to study drivers’ 

transition of control in automation by observing 

their visual sampling behaviour during different 

stages of the take over process.  

 

We begin with outlining the two theoretical bases of 

this work: decision-making theory, and the human 

factors of transitions of control. Thereafter, the two 

theories will be compared, especially regarding their 

analogous processes of Situation Awareness 

acquisition and evidence accumulation. Finally, this 

paper considers how such an approach can generate 

outputs that may be applied by presenting a 

conceptual mathematical model that can be used to 

fit experimental data regarding transitions of control 

to understand human behaviour. 

 

2. Transitions of control from vehicle 

automation 
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This section of the paper aims to define key 

concepts in the field of human factors of transitions 

of control, such as the decision-action loop, 

Situation Awareness, and the issues that are related 

to this process. With a clear definition of this 

concept in hand, it will be possible to compare them 

to the concepts related to the decision-making 

theory, understanding how they might interact and 

complement each other. 

 

The term transition of control was described by 

Louw (2017) as: “the process and period of 

transferring responsibility of, and control over, some 

or all aspects of a driving task, between a human 

driver and an automated driving system.” SAE 

(2018) complement this definition with a taxonomy, 

by outlining how a driver’s responsibility varies 

across the different levels of automation, and a 

distinction if they were system- or driver-initiated 

transitions. The need for such transitions of control 

is partly based on current system limitations, in 

terms of the technology’s operational design domain 

(see NHTSA, 2016, for a more descriptive 

definition of the problem), where vehicles cannot 

operate in all scenarios, and the human drivers are 

expected to supervise the automation and resume 

control, whenever a system limitation is reached. 

However, the inherent problem with such 

supervisory roles is diminished driving capabilities 

associated with the relinquishing of control, which 

his associated with several challenges when drivers 

are requested to resume control, especially in time-

critical scenarios (Louw, 2017). Some of these 

issues are discussed below. 

2.1. The decision-dction loop 

According to many authors (e.g. Young, 2012), 

manual driving is a task which requires the driver to 

always be in the information processing “loop”, 

with regards to their interactions with the 

surrounding road environment, as well as their 

ability to control and coordinate vehicle 

manoeuvres, involving steering, acceleration and 

braking. Thomas (2001) states that the operation of 

a vehicle is closely associated with constant 

feedback and feed-forward cycle of human 

interaction with the task. Here, humans’ decisions 

and actions affect the situation, and this change is 

perceived once more by the individuals, who orient 

and adjust their behaviour accordingly. Merat et al. 

(2018) further complement this logic for the context 

of vehicle automation (based on the model purposed 

by Michon, 1985), by stating that there are two 

distinct loops in manual driving, which can be 

affected by ceding control to automation: one for 

motor-control coordination, and another for the 

several decision-making processes that need to be 

performed while driving. They suggest “(…) that 

“being in the loop” can be understood in terms of 

(1) the driver’s physical control of the vehicle, and 

(2) monitoring the current driving situation (…)” 

(Merat et al., 2018). It must be noted that both loops 

continually interact with each other, and drivers 

must be aware of both their visual-motor 

coordination (see Wilkie et al., 2008 for a more 

descriptive definition of the term) and the 

surrounding environment, to safely maintain control 

of the task

Figure 1. Representation of the decision-action loop and drivers’ monitoring role in manual control of the driving task 

(Merat et al., 2019; based on Michon’s model, 1985; Copyright © 2019 Springer. Reprinted with Permission of 

Springer Publications).
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2.2. Situation awareness recovery 

 
Using driving simulator experiments, Louw et al. 

(2016), supplemented by previous evidence from 

Damböck et al. (2013), argue that by removing 

drivers from the decision-making and control loops, 

vehicle automation reduces drivers’ Situation 

Awareness (SA; Endsley, 1995), which needs to be 

re-acquired in order to safely resume control and 

avoid potentially dangerous situations on the road 

(Damböck et al., 2013). The definition of Situation 

Awareness used in this research, and defined 

initially by Endsley (1988), is: “the perception of 

the elements in the environment within a volume of 

time and space, the comprehension of their 

meaning, and the projection of their status in the 

near future.” In short, SA can be divided into three 

levels (perception; comprehension and prediction), 

which allow humans to orient their decisions in a 

particular context and volume of time (Fig. 2). 

 

Figure 2. Endsley's model of SA. This is a synthesis of versions she has given in several sources, notably Endsley 

(1995) and Endsley et al. (2000), in Wickens (2008). 

  

The loss of Situation Awareness and its relation to 

being “out of the loop” have been declared by a 

number of studies on vehicle automation (Carsten et 

al., 2012; Ohn-Bar & Trivedi, 2016; Morando et al., 

2019), some of which have considered how these 

concepts are affected by drivers’ engagement in 

non-driving-related tasks. It is argued that upon a 

request to resume control from automation, drivers 

have to move their visual attention from the NDRT, 

to focus on other sources of information, related to 

the driving task, to acquire enough SA to take back 

control of the vehicle. Gartenberg et al. (2014) refer 

to this process (which is not only relevant to vehicle 

automation) as Situation Awareness Recovery or 

SAR. This is described as a visual scanning process 

with a considerable number of short fixations in 

different areas, with a significant lag of resumption  

 

in tasks, and a high probability of re-fixation to the 

same information source, more than once. Examples  

of such a process was observed in Louw et al. 

(2019), who reported in their driving simulator 

experiments that drivers who were engaged in a 

visual non-driving-related task during automation 

(assumed to induce an OotL state) had a more 

scattered gaze pattern after resumption of control 

from a silent automation failure, compared to those 

who were required to monitor the road environment 

during automation. 

One of the challenges for the human factors 

community in addressing this problem is that the 

process of SAR is accompanied by several barriers, 

called SA challenges (Endsley, 2006). Endsley & 

Kriss (1995) named several challenges for the 
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Situation Awareness acquisition, such as attention 

tunnelling, change blindness, stress on operators’ 

(drivers’) working memory, as well as the division 

of the information required from multiple sources, 

making it difficult for operators to gather all the 

information they might need in a reasonable amount 

of time (e.g. see Parasuraman & Riley, 1998). For 

driving automation, it has been demonstrated that 

time pressure, or information overload, might affect 

the quality of drivers’ performance. This is thought 

to be because drivers’ attentional resources are 

continuously stretched by the high demands of the 

driving task itself, which is aggravated by 

automation (Goodrich & Boer, 2003). The 

dispersion of drivers’ gaze also competes between 

focused attention to the vehicle’s heading (due to a 

visual-motor coordination, Wilkie et al., 2008) and 

hazard perception routines, which are generally 

characterised by an increased lateral gaze dispersion 

(Crundall et al., 1999). Therefore, drivers not only 

have to acquire information about the situation in 

the environment, and the current status of the 

system (an issue also reported by Endsley, 2006), 

but also have to recover their visual-motor 

coordination, which is degraded once you relinquish 

control from the vehicle (Mole et al., 2019).  Many 

empirical studies show that this need to disperse 

visual attention to different sources affects drivers’ 

performance, increasing risk of crashes (see Russel 

et al., 2016; Zeeb et al., 2015; Blommer et al., 2016; 

Louw et al., 2017; Merat et al., 2014; Gold et al., 

2013; Damböck et al., 2013).  

 

3. Decision-making theory principles and 

models 

 
The definition of decision-making adopted in this 

work was proposed by Edwards (1954), and is 

defined as follows: “(…)given two states, A and B, 

into either one of which an individual may put 

himself, the individual chooses A in preference to B 

(or vice versa)”.  This definition was further 

developed by Simon (1959), who added organised 

this process into four main stages: 1) definition of 

the problem, 2) identification of possible solutions, 

3) objective assessment of the value of each solution 

for the problem, 4) choice of the best solution. As 

human beings, we are continuously making 

decisions, based on our internal representation of 

what we should do in every situation, given certain 

parameters (stage 3). In a driving task, many actions 

involve a decision-making process. Some examples 

include deciding: a comfortable car-following 

distance (Boer, 1999), what gaps we will accept 

when changing lanes (Gipps, 1986), how we 

respond to a potential forward collision (Blommer et 

al., 2017), and whether to disengage from 

automation (see Markkula et al., 2018, for more 

examples). 

In the context of this paper, decision-making can be 

defined as the drivers’ choice to take-over control of 

the vehicle or not, and their take-over modality 

(how do they take-over). When constructing a 

model for such decision-making, to account for a 

good or bad decision, in terms of safety, we have as 

observable output variables the decision-making 

time (how long drivers took to decide to take-over), 

decision choice (how they reacted to the given 

scenario) and outcome (based on the objectives 

established for the given situation, were they able to 

achieve this goal?). Yet, there are several kinds of 

decision-making theory models, which may account 

for different aspects of human behaviour, and might 

be useful for certain situations and not others. 

Edwards (1954) also divided the decision-making 

theory models into two main spectrums, which their 

most recent and developed definitions shall be 

further explained in the later sections of this paper: 

the rational and risky decision-making models. 

 

3.1. Rational decision-making models 
 

The concept of rational decision-making (see Simon 

(1979) and March (1978) for a more descriptive 

definition of the term) is based on a metaphorical 

“thinking man”, as a decision-maker. According to 

Simon (1979) and March (1978), a thinking man 

can be characterized as an individual by two main 

conditions: 1) as being capable of acquiring and 

distinguishing all possible relevant information for 

the decision in hand; and 2) the thinking man is 

capable of assigning the correct value of a specific 

choice, based on their established goal in each 

decision-making scenario. Based on these 

assumptions, two individuals would always arrive at 

the same conclusion, when making a rational 

decision about the same problem. The only 

difference between their choices would be personal 

bias, or what outcome they want from the decision. 

Good examples of rational decision-making models 

can be seen in game theory (Nash, 1950), which 

posits that all choices made by an individual have a 

counterpart by a “hostile” opponent (like a chess 

game). The opponent will focus their actions on 

maximising their chances of achieving their goal, 

which is the opposite of the individual’s goal. 
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Another example of a rational decision can be seen 

in the utilitarianism theory, created by Jeremy 

Bentham and John Stuart Mill in the early 19th 

century. This theory holds that there are “greater 

goods” in life, and every moral action can be 

quantified in terms the outcome of “happiness”, and 

that it is always right to maximise happiness in our 

choices in life for a “greater good” (for a more 

complete description of the term, see Mill, 1868). 

Indeed, rational decision-making processes are 

utopic in most cases, and their scope for 

applicability is limited, as everything needs to be 

quantifiable, such as in mathematical logic problem 

solutions (for examples, see Bell et al., 1988).  

 

3.2. Risky decision-making models 
 

According to decision-making theory, whenever the 

decision-maker is forced to make a decision without 

a clear notion of the possible outcomes of their 

choice, this process is considered to be a risky 

decision (Edwards, 1954). Models in the risky 

decision-making theory are based on the 

assumptions: 1) that not all variables can be 

accurately, or even wholly, quantified, 2) that 

humans are not certain about how their actions will 

affect the environment of the task in hand, and, 3) 

humans are not aware of are all the variables that 

they should consider to make their decision. 

Humans in that situation can estimate, based on 

their mental models (see Nielsen, 2010 for a 

description of the term), the probable outcomes for a 

given task for each possible action that they can 

perform, and use that information to guide their 

decision-making. In situations where the outcome of 

an individual’s decision is not predictable, they need 

to account for a level of uncertainty as part of their 

decision-making process. Uncertainty is defined by 

Shaw (1983) as the inability of the decision-making 

to assign the correct value of an option, nor predict 

the outcomes of their decision to the given 

environment. This uncertainty concept is a key 

assumption underlying risky decision-making 

models and is discussed later in this paper. As 

humans’ mental processing is not directly 

observable, risky decision-making models can be 

used to explain human behaviour based on certain 

assumptions. The most relevant ones are described 

below: 

Evidence accumulation models assume that every 

decision-maker a priori does not have sufficient 

information about the situation to make a decision 

and will seek evidence that will influence their 

decision towards one of the outcomes known to 

them. Furthermore, every individual has a personal 

threshold of accumulated evidence that once 

reached, causes them to opt for one possible choice, 

over another (Ratcliff & Smith, 2004). This 

threshold varied based on a number of factors, 

including experience, gender, personal attitudes and 

many others. It must be noted that the rate of 

evidence, or “drift”, is accumulated differently for 

every person, which is also influenced by a number 

of factors. In the field of vehicle automation, 

Markkula et al. (2018) have demonstrated how to 

apply decision-making models based on evidence-

accumulation to explain, for example, what 

information drivers use to decide how to resume 

control from vehicle automation to avoid an 

incoming forward collision. 

Bounded rationality models, first defined by 

Simon (1972), which holds that humans can make 

decisions based on the information available to 

them. These have similar assumptions to rational 

decision-making models but differ in that they 

assume that humans are not capable of considering 

all the relevant information to make a decision. This 

can be caused by a lack of cognitive resources, time 

pressure, or simple lack of knowledge about the 

presence of a particular source of information. 

Considering this paradigm, bounded rationality 

models assume that the decision-maker prioritises 

certain information over others (randomly or 

selectively). This prioritised information will most 

likely bias the decision towards a particular choice, 

depending on the information sampled, and not only 

on individual preferences. This kind of model is 

especially relevant for the transition of control in 

vehicle automation, as it is assumed that drivers in 

such situations can be overloaded with large 

volumes of spatially dispersed visual information, 

and may not be able to process all the information 

they would need Examples for such overload can be 

found in Gold et al. (2013) and Blommer et al. 

(2017), who show that drivers change their 

decisions about when to resume control from 

automation, based on the amount of time they have 

to react before the automated system reaches its 

limit. Although, it is worth considering that those 

authors have only considered visual information, so 

other factors might also have affected the observed 

results. 

Satisficing decision-making models assume that 

the decision-maker will not seek the most optimal 

solution for his/her problem, but instead will make 

the first decision where the outcome satisfies their 
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needs or goals in the given situation (Wierzbicki, 

1982; Parke et al., 2007). This approach was used in 

studies by Boer (1999), Boer & Hoedemaeker 

(1998), and Goodrich & Boer (2003), in different 

scenarios. For example, Boer (1999) demonstrated 

that drivers tend to have not one specific “ideal car-

following distance”, but rather have a satisficing 

margin, that floats closer or further to the lead 

vehicle, where the drivers assume to be safe and 

close enough to be satisfied and refocus in other 

demands from the car-following task (such as lateral 

control of the vehicle), instead of actively re-adjust 

their following distance to a point they would 

consider to be ideal.  

 Most concepts in these models are somewhat 

interchangeable and can be combined in a 

descriptive or mechanistic analysis. Their 

relationship with the field of automation will be 

discussed in the subsequent sections of this work.  

 

 

 

 

 

 

 

 

4. Relationship between human factors 

challenges and risky decision-making 

 
Based on the two types of decision-making theory 

models described above, it is evident that the 

process of Situation Awareness recovery during the 

transition control from vehicle automation presents 

several similarities to the risky decision-making 

theory, which is discussed in the following sections. 

Merat et al. (2018) stated that drivers re-enter the 

cognitive loop of the driving task by acquiring 

sufficient levels of Situation Awareness. In the same 

way, Ratcliff & Smith (2004) claim that whenever 

an individual is presented with an opportunity to 

make a decision, they will need to accumulate 

evidence that will support the choice they eventually 

make. This direct comparison shows similarities in 

the applicability of both the concept of evidence 

accumulation and SA for those theories with the 

same purpose, which is to understand how humans 

use the information to react to a given 

environmental condition and achieve their desired 

goal.  Fig. 2 presents a schematic representation of 

the proposed relationship between the two theories. 

 

 
 

Figure 3. Representation of the relationship between SA and decision-making theory. 

 

 

As mentioned above, decision-making theory holds 

that the decision- making process is composed by 

four steps: 1) define the problem, and understand its 

characteristics; 2) formulate/generate possible 

solutions for the given problem; 3) estimation of the 

value of possible outcomes; 4) selection of the 

outcome with the highest value for the given 

problem (see Simon, 1959 for a better description). 

Endsley (1995) divided the SA into levels, in a way 

that the individual needs to 1) identify the elements 
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in the environment, 2) comprehend their meaning, 

and how it shapes the situation in hand, and 3) 

orient how those elements can be interacted with, in 

a way that is possible to predict what can be the 

outcomes of their potential actions. According to 

Simon (1957) and Edwards (1954), a decision can 

only be made if there is a clear notion/definition of 

the value of each solution to the upcoming problem, 

and that to achieve this, the decision-maker 

accumulates evidence that assigns the correct value 

to a particular option, reducing the decision-maker’s 

level of uncertainty (Shaw, 1982). Observing the 

same phenomenon through the lenses of the SA 

theory, we can understand that the comprehension 

of the problem (in the case of this work, a request to 

transition control) and their possible solutions as 

level two SA. The process of assigning value, or 

expected outcome of possible action in order to 

make the appropriate decision can be directly linked 

to the level three situation awareness, or projection 

of future states. In this framework, it can be 

assumed that the process of moving from level two 

to level three SA can be directly compared to the 

process of accumulation of evidence, which is 

simply the reduction of uncertainty about the 

outcomes of a possible action to a given scenario. 

The arguments presented in the previous section 

showed that barriers, called SA challenges (Endsley, 

2006), impede an individual’s ability to acquire all 

the sufficient levels of SA they need to make an 

optimal resumption of control from automation (see 

Parasuraman & Riley (1997) for an example of such 

phenomenon). Analysing the challenges imposed to 

an individual to resume control from automation 

through the lens of decision-making theory, a 

similar problem is reported by Edwards (1954) and 

Simon (1957) who say that an entirely rational 

decision is utopic. The authors believe that barriers 

imposed by the scenario, such as time pressure and 

bounded rationality, forces the human decision-

maker to deal with uncertainty, by making 

assumptions about certain conditions about the 

environment, based on their expectations, and, thus, 

adopting a risky decision. As examples relating to 

resumption of control from vehicle automation, 

Blommer et al. (2017) and Gold et al. (2013) 

showed that drivers have an increased probability to 

“just brake”, instead of both braking and steering, 

whenever they had limited time to respond to the 

scenario. The authors noted that the scenario 

exceeded drivers’ abilities to cope with the situation 

and to perform the ideal action. These two examples 

can be translated in the risky decision-making 

theory as satisficing decision-making actions, where 

even if it was not perfect, it was the best they could 

do with the information they had, opting to make a 

simple reaction to the scenario. 

Based on the arguments presented above, we believe 

that risky decision-making theory is a suitable 

candidate to model the process of the take-over of 

control from vehicle automation. The application of 

decision-making theory can complement the 

existing studies on the transition, as it can be used to 

understand the relationship between the information 

sampled by drivers and their subsequent behaviour. 

Practically speaking, this approach complements the 

current studies in the field by providing robust 

mathematical models that assign causality between 

evidence accumulation and decision (see Orquin & 

Loose, 2013), which are not commonly linked to the 

situation awareness theory. It is now essential to 

evaluate how this theory can be applied and 

implemented to better describe driver behaviour 

during transitions of control.  

 

5. Using decision-making models to orient 

drivers’ decision-making 

 
Sivak (1996) stated that vision is the most important 

of the five human senses for driving, but yet, it is 

not suited to dealing with multiple demands at the 

same time. For this reason, drivers need to prioritise 

certain visual information over others to perform a 

transition of control (for more details about this 

process, see Goodrich & Boer, 2003). 

 

According to Orquin & Loose (2013), visual 

attention and decision-making are tightly coupled, 

since a driver’s risky decision-making is 

continuously biased by whether or not they attended 

to relevant visual information available to them. In 

their literature review, the authors found a co-causal 

relationship between visual attendance to 

information and the occurrence of specific choices, 

in a discrete decision-making scenario. As part of a 

meta-analysis, the authors analysed several 

decision-making tasks that used eye-tracking data as 

a dependent variable. They concluded that an 

individual’s gaze fixation on certain essential 

information could predict their upcoming choice in 

a discrete scenario, suggesting that the selective 

attention of drivers may bias their decision-making. 

Such an approach may also be applied to analyse 

drivers’ response capabilities in a take-over 

scenario, once a take-over reaction is nothing more 

than a selective response to a particular scenario 
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condition.  

 

The arguments above support the possibility of 

modelling the relationship between different gaze 

allocation strategies and the probability of yielding 

specific responses to the take-over control scenario 

(based on the studies reported by Orquin & Loose, 

2013). This approach would inform system 

designers about which information should be 

scanned with higher priority, to yield a higher 

probability of safe and timely responses to different 

take-over scenarios. This information could be used 

to create HMIs that guide drivers towards making 

decisions that result in safe outcomes. For example, 

indicating where drivers should focus their attention 

on a successful transition of control could help 

avoid an impending collision, as suggested by Louw 

et al. (2017). 

 

6. Formulation of a take-over model 

 
In previous sections, it was discussed theoretically 

how evidence accumulation models can be applied 

to understand and predict drivers’ take-over 

behaviour. Evidence from previous literature 

suggests that inputs from eye movements to the 

models can create a robust way to understand 

drivers decision-making process. This section of the 

paper describes the process of formulation of a 

mathematical model that can be applied for data 

fitting suited for the process of transition of control 

in vehicle automation, based on the elements 

discussed above. 

 

According to Wagenmakers et al. (2008), evidence 

accumulation models use real data from experiments 

to estimate how the process of information 

acquisition for every individual participant leads to 

their decision. It receives as the input variable 

response times (t) and choice selection (p) of every 

individual, and based on the individual differences 

across data samples, they can draw assumptions 

based on probability distributions of how humans 

make decisions. According to the authors, and many 

others in the field (see Ratcliff et al., 2004 for a 

more descriptive explanation about evidence 

accumulation models), the main estimated 

parameters in this kind of model are:  

1. Mean drift rate (v), or how quickly evidence 

is accumulated towards the decision. 

2. Boundary limit for the decision (a), or how 

much evidence needs to be accumulated for 

a decision to be made. 

3. Previous knowledge or information that 

may speed up the decision process (z), also 

known as bias. 

4. Inter-participant variability (s), which 

assumes that different people have 

faster/slower processes of evidence 

accumulation. 

 

Fig. 4 shows how all those variables are fit together 

in a graphical representation of the model and how 

the parameters are estimated. It is now necessary to 

understand how the context of the transition of 

control and situation awareness acquisition can be 

translated in this kind of model, and also how data 

related to visual attention allocation can be used to 

generate more accurate descriptions of drivers’ 

decision-making behaviour. 

 
Figure 4. Graphical representation of an evidence accumulation model. Source: Ratcliff et al. (2004).
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As already said before, the process of situation 

awareness acquisition can be directly translated as 

the process of evidence accumulation, in a way that 

drivers have as their primary goal to safely recover 

manual control of a vehicle, and will sample 

information about the multiple options they have to 

do so, until they reach a point that they are confident 

enough about one specific option and engage in the 

task execution. As the situation awareness 

acquisition process is mainly defined as a visual task 

(Gartenberg et al., 2014), and the process of 

transition of control is mainly constrained by 

bounded rationality (for examples, see Endsley, 

2006), it is possible to assume that different gaze 

sample patterns would inherently bias the 

accumulation process, leading to both different 

response times, and probability of certain response 

to happen. With this argument in mind, it is then 

necessary to insert in the model a variable related to 

gaze allocation over time, which controls how much 

evidence can be accumulated over time, based in 

where the drivers are looking (drift rate). 

Since this paper describes only a proof of concept 

for the theory presented above, we opted to develop 

an adapted version of a linear ballistic accumulator 

model (LBA; Brown & Heathcote, 2008). This 

technique was chosen due to its simplified math 

(easy to explain) and low computational power 

requirements for its implementation. Future studies 

might want to consider more robust models, which 

also includes other explanatory variables (eg. drift-

diffusion models). The LBA model is an evidence-

based decision-making model, which assumes that 

the process of evidence accumulation related to one 

possible choice is independent of the other, in a way 

that two possible decision choices are calculated 

separatelly, as if they were diferent scenarios. The 

second assumption of the model is that there is no 

internal variability or noise in the process of 

evidence accumulation. For every sample, it 

generates a linear function between evidence and 

time.  The differences in the response profiles can 

be only observed by across-participants differences 

(Dokin et al., 2009). 

The flowchart below (Fig. 5) is the conceptual 

representation of the proposed model, where drivers, 

after receiving a take-over request, would gather 

visual information, in a goal-directed top-down 

approach, to accumulate evidence about a possible 

solution to the task. This evidence would be 

combined with their previous information about the 

situation (current SA levels) and their personal bias 

and would accumulate until it reaches a threshold of 

satisficing levels, triggering the execution of an 

action. In this scenario, different sources of visual 

information would lead to a different drift rate, 

causing variability in drivers’ take-over time. In this 

process, every possible decision is calculated and 

modelled separately. 

 

Figure 5. Graphical representation of an evidence accumulation model. Source: Ratcliff et al. (2004). 

In terms of calculation, the purposed formula 

assumes that take-over time (tot) is the sum of the 

total time drivers spent gazing towards the n 

different sources (i) of information. Also, the 

process of accumulation of evidence is defined as 

the sum of the time drivers spent looking at each 

information source (t_i), times a constant, which 

indicates the drift rate, related to each specific 

information source (v_i). See below the two 

equations that define the base formula of the model. 

1) 𝑇𝑜𝑇 =  ∑ 𝑡𝑖
𝑛
𝑖=1  

 

2) 𝑎 = 𝑧 + (∑ 𝑡𝑖
𝑛
𝑖=1 ∗ 𝑣𝑖) ∗ 𝑠 

 

Equation 1. Formulation for the take-over decision-

making model. ToT is the take-over time; t is the time 

drivers spent gazing towards each information source i; z 

is drivers’ previous knowledge about the situation and 

personal bias; v is the drift rate for every information 

source; a is the estimated threshold for the decision-
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making, and s is the ratio for individual differences. 

Figure 6. Graphical representation of the output from the 

proposed model. 

With this approach, it is possible to estimate how 

valuable certain information source i is for the 

decision-making process, assuming that it would 

affect drivers’ decisions in the same way. As for the 

assumptions of the model, 1) it assumes that the 

process of information acquisition is constant and 

linear, and does not account for information 

saturation of one source, nor to noise on the process 

of information acquisition; 2) it assumes that every 

option is computed individually, and not in a 

conflicting way, as a drift-diffusion model would 

(Ratcliff et al., 2004); 3) it assumes that drivers are 

in time pressure, in a way that they would perform 

the decided action as soon as they decided what to 

do, as mind-wandering and non-decision-making 

related data would add noise to the model. 

7. Conclusion 

The primary aim of this paper was to assess the 

feasibility of applying risky decision-making theory 

models to understand drivers’ take-over behaviour 

during transitions of control from vehicle 

automation. A secondary aim was to explain how 

decision-making models could be implemented by 

system designers as a tool to understand human 

behaviour and create products that better suit driver 

needs. 

The initial sections point out similarities between the 

theories on SA and risky decision-making, which 

makes them comparable and applicable for similar 

purposes. The main points of proximity between the 

two theories include the concepts of evidence 

accumulation and level three situation awareness, 

respectively, to account for how humans make a 

decision in a given scenario. We also proposed that 

models that correlate vision and decision-making 

modality as a causal factor could be used to identify 

which information, once sampled, can increase the 

probability for drivers to perform a supposed 

“optimal response”. In conclusion, we propose that 

decision-making models, based on evidence 

accumulation, can be used in HMI design, to 

enhance drivers’ acquisition of certain essential 

information and, thereby, optimise their take-over 

performance. For example, if we know how drivers 

sample visual information before an optimal 

response, and we use this knowledge to design 

HMIs to reproduce this behaviour in other drivers in 

similar situations, then we may increase the 

probability that they respond similarly. 

As for limitations and future directions, this work is 

chiefly a theoretical consideration and lacks 

sufficient evidence to defend the real value of the 

application of decision-making models in the design 

process for human-centric vehicle automation 

systems. Empirical studies are required to evaluate 

how well decision-making models can predict 

drivers’ take-over modality, and whether, if certain 

information is highlighted in the system design, 

drivers’ performance in take-over scenarios can be 

enhanced. 
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